Role of scaffolding protein CipC of Clostridium cellulolyticum in cellulose degradation.

نویسندگان

  • S Pagès
  • L Gal
  • A Bélaïch
  • C Gaudin
  • C Tardif
  • J P Bélaïch
چکیده

The role of a miniscaffolding protein, miniCipC1, forming part of Clostridium cellulolyticum scaffolding protein CipC in insoluble cellulose degradation was investigated. The parameters of the binding of miniCipC1, which contains a family III cellulose-binding domain (CBD), a hydrophilic domain, and a cohesin domain, to four insoluble celluloses were determined. At saturating concentrations, about 8.2 micromol of protein was bound per g of bacterial microcrystalline cellulose, while Avicel, colloidal Avicel, and phosphoric acid-swollen cellulose bound 0.28, 0.38, and 0.55 micromol of miniCipC1 per g, respectively. The dissociation constants measured varied between 1.3 x 10(-7) and 1.5 x 10(-8) M. These results are discussed with regard to the properties of the various substrates. The synergistic action of miniCipC1 and two forms of endoglucanase CelA (with and without the dockerin domain [CelA2 and CelA3, respectively]) in cellulose degradation was also studied. Although only CelA2 interacted with miniCipC1 (K(d), 7 x 10(-9) M), nonhydrolytic miniCipC1 enhanced the activities of endoglucanases CelA2 and CelA3 with all of the insoluble substrates tested. This finding shows that miniCipC1 plays two roles: it increases the enzyme concentration on the cellulose surface and enhances the accessibility of the enzyme to the substrate by modifying the structure of the cellulose, leading to an increased available cellulose surface area. In addition, the data obtained with a hybrid protein, CelA3-CBD(CipC), which was more active towards all of the insoluble substrates tested confirm that the CBD of the scaffolding protein plays an essential role in cellulose degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Are Cellulosome Scaffolding Protein CipC and CBM3-Containing Protein HycP, Involved in Adherence of Clostridium cellulolyticum to Cellulose?

Clostridium cellulolyticum, a mesophilic anaerobic bacterium, produces highly active enzymatic complexes called cellulosomes. This strain was already shown to bind to cellulose, however the molecular mechanism(s) involved is not known. In this context we focused on the gene named hycP, encoding a 250-kDa protein of unknown function, containing a Family-3 Carbohydrate Binding Module (CBM3) along...

متن کامل

Interaction between the endoglucanase CelA and the scaffolding protein CipC of the Clostridium cellulolyticum cellulosome.

The 5' end of the cipC gene, coding for the N-terminal part of CipC, the scaffolding protein of Clostridium cellulolyticum ATCC 35319, was cloned and sequenced. It encodes a 586-amino-acid peptide, including several domains: a cellulose-binding domain, a hydrophilic domain, and two hydrophobic domains (cohesin domains). Sequence alignments showed that the N terminus of CipC and CbpA of C. cellu...

متن کامل

Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a catabolite-responsive element.

The cip-cel cluster of genes plays an important role in the catabolism of the substrate cellulose by Clostridium cellulolyticum. It encodes several key components of the cellulosomes, including the scaffolding protein CipC and the major cellulase Cel48F. All the genes of this cluster display linked transcription, focusing attention on the promoter upstream from the first gene, cipC. We analyzed...

متن کامل

Molecular study and overexpression of the Clostridium cellulolyticum celF cellulase gene in Escherichia coli.

The CelF-encoding sequence was isolated from Clostridium cellulolyticum genomic DNA using the inverse PCR technique. The gene lies between cipC (the gene encoding the cellulosome scaffolding protein) and celC (coding for the endoglucanase C) in the large cel cluster of this mesophilic cellulolytic Clostridium species. Comparisons between the deduced amino acid sequence of the mature CelF (693 a...

متن کامل

Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome.

The Clostridium josui cipA and celD genes, encoding a scaffolding-like protein (CipA) and a putative cellulase (CelD), respectively, have been cloned and sequenced. CipA, with an estimated molecular weight of 120,227, consists of an N-terminal signal peptide, a cellulose-binding domain of family III, and six successive cohesin domains. The molecular architecture of C. josui CipA is similar to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 9  شماره 

صفحات  -

تاریخ انتشار 1997